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Abstract

We propose a new matrix completion algorithm—
Kernelized Probabilistic Matrix Factorization (KPMF),
which effectively incorporates external side information
into the matrix factorization process. Unlike Probabilis-
tic Matrix Factorization (PMF) [14], which assumes an
independent latent vector for each row (and each col-
umn) with Gaussian priors, KMPF works with latent
vectors spanning all rows (and columns) with Gaussian
Process (GP) priors. Hence, KPMF explicitly captures
the underlying (nonlinear) covariance structures across
rows and columns. This crucial difference greatly boosts
the performance of KPMF when appropriate side infor-
mation, e.g., users’ social network in recommender sys-
tems, is incorporated. Furthermore, GP priors allow the
KPMF model to fill in a row that is entirely missing in
the original matrix based on the side information alone,
which is not feasible for standard PMF formulation. In
our paper, we mainly work on the matrix completion
problem with a graph among the rows and/or columns
as side information, but the proposed framework can be
easily used with other types of side information as well.
Finally, we demonstrate the efficacy of KPMF through
two different applications: 1) recommender systems and
2) image restoration.

1 Introduction

The problem of missing value prediction, and particu-
larly matrix completion, has been addressed in many
research areas, including recommender systems [11,16],
geostatistics [20], and image restoration [3]. In such
problems, we are typically given an N ×M data ma-
trix R with a number of missing entries, and the goal is
to fill in the missing entries properly such that they are
coherent with the existing data, where the existing data
may include the observed entries in the data matrix as
well as the side information depending on the specific
problem domain.

Among the existing matrix completion techniques,
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factorization based algorithms have achieved great suc-
cess and popularity [1, 9, 14, 15, 18, 21]. In these algo-
rithms, each row, as well as each column, of the matrix
has a latent vector, obtained from factorizing the par-
tially observed matrix. The prediction of each missing
entry is thus the inner product of latent vectors of the
corresponding row and the corresponding column. How-
ever, such techniques often suffer from the data sparsity
problem in real-world scenarios. For instance, accord-
ing to [16], the density of non-missing ratings in most
commercial recommender systems is less than 1%. It is
thus very difficult to do missing value prediction based
on such small amount of data. On the other hand, in ad-
dition to the data matrix, other sources of information,
e.g., users’ social network in recommender systems, are
sometimes readily available, and could provide key in-
formation about the underlying model, while many of
the existing factorization techniques simply ignore such
side information, or intrinsically, are not capable of ex-
ploiting it (see Section 2 for more on related work)

To overcome such limitations, we propose the
Kernelized Probabilistic Matrix Factorization (KPMF)
model, which incorporates the side information through
kernel matrices over rows and over columns. KPMF
models a matrix as the product of two latent matri-
ces, which are sampled from two different zero-mean
Gaussian processes (GP). The covariance functions of
the GPs are derived from the side information, and en-
code the covariance structure across rows and across
columns respectively. In this paper, we focus on deriv-
ing covariance functions from undirected graphs (e.g.,
users’ social network). However, our general framework
can incorporate other types of side information as well.
For instance, when the side information is in the form
of feature vectors [1], we may use the RBF kernel [17]
as the covariance function.

Although KPMF seems highly related to the Proba-
bilistic Matrix Factorization (PMF) [14] and its general-
ized counterpart–Bayesian PMF (BPMF) [15], the key
difference that makes KPMF a more powerful model
is that while PMF/BPMF assumes an independent la-
tent vector for each row, KPMF works with latent vec-
tors spanning all rows. Therefore, unlike PMF/BPMF,



KPMF is able to explicitly capture the covariances
across the rows. Moreover, if an entire row of the data
matrix is missing, PMF/BPMF fails to make prediction
for that row. In contrast, being a nonparametric model
based on a covariance function, KPMF can still make
predictions based on the row covariances alone. Simi-
larly, the above discussion holds for columns as well.

We demonstrate KPMF through two applications:
1) recommender systems and 2) image restoration. For
recommender systems, the side information is users’
social network, and for image restoration, the side
information is derived from the spatial smoothness
assumption–pixel variation in a small neighborhood
tends to be small and correlated. Our experiments show
that KPMF consistently outperforms state-of-the-art
collaborative filtering algorithms, and produce promis-
ing results for image restoration.

The rest of the paper is organized as follows:
Section 2 discusses related work. Section 3 gives a
brief overview of the background, and in particular,
the PMF and BPMF models. Section 4 presents the
KPMF model and two methods, gradient descent and
stochastic gradient descent, for learning it. We present
the experimental results for recommender systems in
Section 5 and for image restoration in Section 6, and
conclude in Section 7.

2 Related Work

Factorization-based algorithms are powerful techniques
for matrix completion. In particular, a probabilis-
tic framework for matrix factorization, namely Prob-
abilistic Matrix Factorization (PMF), was recently pro-
posed in [14], and generalized to a full Bayesian model
in [15] (see Section 3.2 for more discussion on PMF and
Bayesian PMF). Additionally, Lawrence and Urtasun [9]
developed a non-linear extension to PMF using Gaus-
sian process latent variable models. However, one major
limitation of the above methods is the lack of ability to
incorporate side information into the factorization pro-
cess.

Now we review some existing matrix completion al-
gorithms that incorporate side information in the frame-
work. The approach proposed in [18] generalizes PMF
to a parametric framework and uses topic models for
incorporating side information. Similarly, Wang and
Blei [21] combined traditional collaborative filtering and
probabilistic topic modeling for recommending scientific
articles, and Agarwal and Chen [1] developed a ma-
trix factorization method for recommender systems us-
ing LDA priors to regularize the model based on item
meta-data and user features. Moreover, Ma et al. [11]
proposed to perform probabilistic matrix factorization
on users’ social network and the rating matrix jointly,

so that the resulting latent matrices depend on both
input sources, and Agovic et al. [2] proposed the Prob-
abilistic Matrix Addition (PMA) model, where the gen-
erative process of the data matrix is modeled as the
additive combination of latent matrices drawn from two
Gaussian processes: one for the rows, and the other for
the columns. The main difference between PMA and
KPMF, as we shall see, is that in PMA, the Gaussian
processes capturing the covariance structure for rows
and columns are combined additively in the generative
model, while in KPMF, the Gaussian processes are pri-
ors for the row and column latent matrices, and the data
matrix is generated from the product of the two latent
matrices.

3 Preliminaries

3.1 Notations While the proposed KPMF model
is applicable to other matrix completion problems,
we focus on recommender systems and develop the
notation and exposition accordingly. We define the
main notations used in this paper as follows:

R – N ×M data matrix.

Rn,: – nth row of R.

R:,m – mth column of R.

N – Number of rows in R.

M – Number of columns in R.

D – Dimension of the latent factors.

U – N ×D latent matrix for rows of R.

V – M ×D latent matrix for columns of R.

Un,: ∈ RD – Latent factors for Rn,:.

Vm,: ∈ RD – Latent factors for R:,m.

U:,d ∈ RN – dth latent factor for all rows of R.

V:,d ∈ RM – dth latent factor for all columns of R.

KU ∈ RN×N – Covariance matrix for rows.

KV ∈ RM×M – Covariance matrix for columns.

SU ∈ RN×N – Inverse of KU .

SV ∈ RM×M – Inverse of KV .

[n]N1 – n = {1, 2, . . . , N}.

3.2 PMF and BPMF Consider an N × M real-
valued matrix R with a number of missing entries. The
goal of matrix completion is to predict the values of
those missing entries. Probabilistic Matrix Factoriza-
tion (PMF) [14] approaches this problem from the ma-
trix factorization aspect. Assuming two latent matri-
ces: UN×D and VM×D, with U and V capturing the
row and the column features of R respectively, the gen-
erative process for PMF is given as follows (also see
Figure 1 (a)):

1. For each row n in R, [n]N1 , generate Un,: ∼
N (0, σ2

UI), where I denotes the identity matrix.
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Figure 1: (a) The generative process of R in PMF; (b)
The generative process of R in KPMF. A is the total
number of non-missing entries in the matrix.

2. For each column m in R, [m]M1 , generate Vm,: ∼
N (0, σ2

V I).

3. For each of the non-missing entries (n,m), generate
Rn,m ∼ N (Un,:V

T
m,:, σ

2).

The model has zero-mean spherical Gaussian priors on
Un,: and Vm,:, and each entry Rn,m is generated from a
univariate Gaussian with the mean determined by the
inner product of Un,: and Vm,:. The log-posterior over
the latent matrices U and V is given by:

log p(U, V |R, σ2, σ2
U , σ

2
V )(3.1)

=− 1

2σ2

N∑
n=1

M∑
m=1

δn,m(Rn,m − Un,:V Tm,:)2

− 1

2σ2
U

N∑
n=1

UTn,:Un,: −
1

2σ2
V

M∑
m=1

V Tm,:Vm,:

− 1

2
(A log σ2 +ND log σ2

U +MD log σ2
V ) + C,

where δn,m is the indicator taking value 1 if Rn,m is
an observed entry, and 0 otherwise, A is the number
of non-missing entries in R, and C is a constant that
does not depend on the latent matrices U and V . MAP
inference maximizes the log-likelihood with respect to U
and V , which could then be used to predict the missing
entries in R.

As an extension of PMF, Bayesian PMF
(BPMF) [15] introduces a full Bayesian prior for
each Un,: and each Vm,:. Un,: (and similarly for
Vm,:) is then sampled from N (µU ,ΣU ), where the
hyperparameters {µU ,ΣU} are further sampled from
Gaussian-Wishart priors.

4 KPMF

In this section, we propose a Kernelized Probabilistic
Matrix Factorization (KPMF) model, and present both

gradient descent and stochastic gradient descent meth-
ods for learning the model.

4.1 The Model In KPMF, the prior distribution of
each column of the latent matrices, U:,d and V:,d, is a
zero-mean Gaussian process [13]. Gaussian processes
are a generalization of the multivariate Gaussian distri-
bution. While a multivariate Gaussian is determined by
a mean vector and a covariance matrix, the Gaussian
process GP (m(x), k(x, x′)) is determined by a mean
function m(x) and a covariance function k(x, x′). In
our problem, x is an index of matrix rows (or columns).
Without loss of generality, letm(x) = 0, and k(x, x′) de-
note the corresponding kernel function, which specifies
the covariance between any pair of rows (or columns).
Also, let KU ∈ RN×N and KV ∈ RM×M denote the
full covariance matrix for rows of R and columns of R
respectively. As we shall see later, using KU and KV in
the priors forces the latent factorization to capture the
underlying covariances among rows and among columns
simultaneously.

Assuming KU and KV are known,1 the generative
process for KPMF is given as follows (also see Fig-
ure 1(b)):

1. Generate U:,d ∼ GP (0,KU ), [d]D1 .

2. Generate V:,d ∼ GP (0,KV ), [d]D1 .

3. For each non-missing entry Rn,m, generate Rn,m ∼
N (Un,:V

T
m,:, σ

2), where σ is a constant.

…
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Figure 2: (a) U is sampled in a “row-wise” manner in
PMF and BPMF; (b) U is sample in a “column-wise”
manner in KPMF.

The likelihood over the observed entries in the
target matrix R given latent matrices U and V is
(4.2)

p(R|U, V, σ2) =

N∏
n=1

M∏
m=1

[N (Rn,m|Un,:V Tm,:, σ2)]δn,m ,

1The choice of KU and KV depends on the specific problem
domain, and will be addressed later with particular examples.



with the priors over U and V given by

p(U |KU ) =

D∏
d=1

GP (U:,d|0,KU ),(4.3)

p(V |KV ) =

D∏
d=1

GP (V:,d|0,KV ).(4.4)

For simplicity, we denote K−1U by SU , and K−1V by SV .
The log-posterior over U and V is hence given by

log p(U, V |R, σ2,KU ,KV )(4.5)

=− 1

2σ2

N∑
n=1

M∑
m=1

δn,m(Rn,m − Un,:V Tm,:)2

− 1

2

D∑
d=1

UT:,dSUU:,d −
1

2

D∑
d=1

V T:,dSV V:,d

−A log σ2 − D

2
(log |KU |+ log |KV |) + C,

where A is the total number of non-missing entries in R,
|K| is the determinant of K, and C is a constant term
not depending on the latent matrices U and V .

4.2 KPMF Versus PMF/BPMF We illustrate
the difference between KPMF and PMF/BPMF in Fig-
ure 2. In PMF/BPMF, U is sampled in a “row-wise”
manner (Figure 2(a)), i.e., Un,: is sampled for each row
in R. {Un,:, [n]N1 } are hence conditionally independent
given the prior. As a result, correlations among rows are
not captured in the model. In contrast, in KPMF, U is
sampled in a “column-wise” manner (Figure 2(b)), i.e.,
for each of the D latent factors, U:,d ∈ RN is sampled
for all rows of R. In particular, U:,d is sampled from
a Gaussian process whose covariance KU captures the
row correlations. In this way, during training, the latent
factors of each row (Un,:) are correlated with those of all
the other rows (Un′,: for n′ 6= n) through KU . Roughly
speaking, if two rows share some similarity according to
the side information, the corresponding latent factors
would also be similar after training, which is intuitively
what we want to achieve given the side information.
Similarly, the discussion above also applies to V and
the columns of R. The difference between KPMF and
BPMF is subtle but they are entirely different models,
and cannot be viewed as special cases of each other.
PMF is a simple special case of both models, with nei-
ther correlations across the rows, nor correlations across
latent factors captured.

The row and column independencies in PMF and
BPMF significantly undermine the power of the model,
since strong correlations among rows and/or among
columns are often present in real scenarios. For in-
stance, in recommender systems, users’ decisions on

item ratings (represented by rows) are very likely to be
influenced by other users who have social connections
(friends, families, etc.) with them. PMF and BPMF
fail to capture such correlational dependencies. As a re-
sult, the proposed KPMF performs considerably better
than PMF and BPMF (see Section 5).

4.3 Gradient Descent for KPMF We perform a
MAP estimate to learn the latent matrices U and V ,
which maximize the log-posterior in (4.5), and is equiv-
alent to minimizing the following objective function:

E =
1

2σ2

N∑
n=1

M∑
m=1

δn,m(Rn,m − Un,:V Tm,:)2

+
1

2

D∑
d=1

UT:,dSUU:,d +
1

2

D∑
d=1

V T:,dSV V:,d .(4.6)

Minimization of E can be done through gradient de-
scent. In particular, the gradients are given by

∂E

∂Un,d
=− 1

σ2

M∑
m=1

δn,m(Rn,m − Un,:V Tm,:)Vd,m

+ eT(n)SUU:,d,(4.7)

∂E

∂Vm,d
=− 1

σ2

N∑
n=1

δn,m(Rn,m − Un,:V Tm,:)Ud,n

+ eT(m)SV V:,d ,(4.8)

where e(n) denotes an N -dimensional unit vector with

the nth component being one and others being zero. The
update equations for U and V are

U
(t+1)
n,d = U

(t)
n,d − η

∂E

∂Un,d
,(4.9)

V
(t+1)
m,d = V

(t)
m,d − η

∂E

∂Vm,d
,(4.10)

where η is the learning rate. The algorithm updates
U and V following (4.9) and (4.10) alternatively until
convergence. It should be noted that since KU and KV

remain fixed throughout all iterations, SU and SV need
to be computed only once at initialization.

Now Suppose an entire row or column of R is miss-
ing. While PMF and BPMF fail to address such prob-
lem, KPMF still works if appropriate side information
is given. In this case, the update equations in (4.9) and



(4.10) become

U
(t+1)
n,d = U

(t)
n,d − ηe

T
(n)SUU:,d

= U
(t)
n,d − η

N∑
n′=1

SU (n, n′)Un′,d(4.11)

V
(t+1)
m,d = V

(t)
m,d − ηe

T
(m)SV V:,d

= V
(t)
m,d − η

M∑
m′=1

SV (m,m′)Vm′,d .(4.12)

In this case, update of the corresponding Un,: is
based on the weighted average of the current U over all
rows, including the rows that are entirely missing and
the rows that are not, and the weights SU (n, n′) reflect
the correlation between the current row n and the rest.
The same holds for V and the columns.

4.4 Stochastic Gradient Descent for KPMF As
stochastic gradient descent (SGD) usually converges
much faster than gradient descent, we also derive the
SGD update equations for KPMF below.

The objective function in (4.6) could be rewritten
as

E =
1

σ2

N∑
n=1

M∑
m=1

δn,m(Rn,m − Un,:V Tm,:)2

+ Tr(UTSUU) + Tr(V TSV V ),(4.13)

where Tr(X) denotes the trace of matrix X. Moreover,

Tr(UTSUU) = Tr(UUTSU )

=Tr

{
UT1,:U1,: UT1,:U2,: . . . UT1,:UN,:
UT2,:U1,: UT2,:U2,: . . . UT2,:UN,:

...
...

. . .
...

UTN,:U1,: UTN,:U2,: . . . UTN,:UN,:



SU (1, 1) SU (1, 2) . . . SU (1, N)
SU (2, 1) SU (2, 2) . . . SU (2, N)

...
...

. . .
...

SU (N, 1) SU (N, 2) . . . SU (N,N)


}

=

N∑
n=1

N∑
n′=1

SU (n, n′)UTn,:Un′,:,

and similarly,

Tr(V TSV V ) =

M∑
m=1

M∑
m′=1

SV (m,m′)V Tm,:Vm,:.

Therefore, (4.13) becomes

E =

N∑
n=1

M∑
m=1

δn,m

[ 1

σ2
(Rn,m − Un,:V Tm,:)2

+
1

M̃n

UTn,:

N∑
n′=1

SU (n, n′)Un′,:

+
1

Ñm
V Tm,:

M∑
m′=1

SV (m,m′)Vm′,:

]
=

N∑
n=1

M∑
m=1

δn,mEn,m ,

where M̃n is the number of non-missing entries in row n
and Ñm is the number of non-missing entries in column
m. Finally, for each non-missing entry (n,m), taking
gradient of En,m with respect to Un,: and Vm,: gives:

∂En,m
∂Un,:

= − 2

σ2
(Rn,m − UTn,:Vm,:)Vm,:

+
1

M̃n

[
N∑

n′=1

SU (n, n′)Un′,: + SU (n, n)Un,:

]
,

∂En,m
∂Vm,:

= − 2

σ2
δn,m(Rn,m − UTn,:Vm,:)Un,:

+
1

Ñm

[
M∑

m′=1

SV (m,m′)Vm′,: + SV (m,m)Vm,:

]
.

4.5 Learning KPMF with Diagonal Kernels If
both KU and KV are diagonal matrices, meaning that
both the rows and the columns are drawn i.i.d., KPMF
reduces to PMF. If only one of the kernels is diagonal,
it turns out that the corresponding latent matrix can
be marginalized, yielding a MAP inference problem on
one latent matrix. To illustrate this, suppose KV is
diagonal (KV = σ2

V I). Following the derivation in [9],
the likelihood for each column in R is given by

p(Rn<m>,m|U, V ) =N (Rn<m>,m|(Un<m>,:V
T
m,:), σ

2I) ,

where n<m> denotes the row indices of non-missing
entries in the mth column, so if there are Ñ non-missing
entries in the column m, Rn<m>,m is a Ñ -dimensional

vector, and Un<m>,: is a Ñ × D matrix with each row
corresponding to a non-missing entry in column m.

Since p(Vm,:|σ2
V ) = N (Vm,:|0, σ2

V I), we can
marginalize over V , obtaining

p(R|U) =

M∏
m=1

p(Rn<m>,m|U)

=

M∏
m=1

∫
Vm,:

N (Rn<m>,m|(Un<m>,:V
T
m,:), σ

2I)

×N (Vm,:|0, σ2
V I)dVm,:

=

M∏
m=1

N (0, σ2
V Un<m>,:U

T
n<m>,: + σ2I)



The objective function then becomes:

E =

M∑
m=1

(
RTn<m>,mC

−1Rn<m>,m + log |C|
)

+

D∑
d=1

UT:,dSUU:,d ,(4.14)

where C = σ2
V Un<m>,:U

T
n<m>,: + σ2I. Moreover, since

V is no longer a term in the objective function, the
gradient descent could be performed solely on U . How-
ever, in this case, updating U at each iteration involves
the inversion of C, which becomes computationally pro-
hibitive when N is large. Hence we do not use this
formulation in our experiments.

4.6 Prediction Learning based on gradient descent
or SGD gives us the estimate of the latent matrices Û
and V̂ . For any missing entry Rn,m, the maximum-
likelihood estimation is the inner product of the corre-
sponding latent vectors, i.e., R̂n,m = Ûn,:V̂

T
m,: .

5 Experiments on Recommender Systems

In this section, we evaluate the KPMF model for
item recommendation with known user relations. In
particular, we are given a user-item rating matrix with
missing entries as well as a social network graph among
users (see Figure 3). The goal is to predict the missing
entries in the rating matrix by exploiting both the
observed ratings and the underlying rating constraints
derived from the social network. We run experiments
on two publicly available datasets, i.e. Flixster [7]
and Epinion [12], and compare the prediction results
of KPMF with several other algorithms.

u1

u
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u
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u

(a) Social network graph (b) Rating matrix

Figure 3: Example input data: (a) social network among
6 users; (b) observed rating matrix for the 6 users on 4
items.

5.1 Datasets Flixster2 is a social movie website,
where users can rate movies and make friends at the

2www.flixster.com

Flixster Epinion

# Users 2000 2000
# Items 3000 3000
# Ratings 173,172 60,485
# Relations 32,548 74,575
Rating Density 2.89% 1.00%

Table 1: Statistics of the datasets used.
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(d) Epinion

Figure 4: (a) and (b): Histograms of users’ rating
frequencies. (c) and (d): Histograms of the number
of friends for each user.

same time. The social graph in Flixster is undirected,
and the rating values are 10 discrete numbers ranging
from 0.5 to 5 in steps of 0.5.

Epinion3 is a customer review website where users
share opinions on various types of items such as elec-
tronic products, companies, and movies, through writ-
ing reviews or giving ratings. Each user also maintains
a list of people he/she trusts, which forms a social net-
work with trust relationships. Unlike Flixster, social
network in Epinion is an directed graph, but for sim-
plicity, we convert the directed edges to be undirected
ones by keeping only one edge between two users if they
are connected in either way originally. The rating values
in Epinion are discrete values ranging from 1 to 5.

For each dataset, we sampled a subset with 2,000
users and 3,000 items. For the purpose of testing our
hypothesis—whether the social network could help in
making ratings prediction—the 2,000 users selected are
users with most friends in the social network, while
the 3,000 items selected are the most frequently rated
overall. The statistics of the datasets are given in

3www.epinions.com



Table 1. Figure 4 shows the histograms for the number
of past ratings and number of friends each user has.

Unless otherwise specified, from all the ratings, we
randomly hold out 10% ratings as the validation set
and another 10% as the test set. The rest 80% of
ratings, along with the whole social network, are used
for creating the training sets. To better evaluate the
effect of social network, we have 4 training sets that are
increasingly sparse, i.e., we use not only all the 80%
but also 60%, 40%, and 20% of the ratings to create
4 different training sets (note that the social network
remains the same). For each observed rating r, we
normalize it to [0.2, 1] using r/rmax, where rmax is the
maximum possible value for the ratings.

5.2 Graph Kernels To construct kernel matrices
suitable to our problem, we consider the users’ social
network as an undirected, unweighted graph G with
nodes and edges representing users and their connec-
tions. Elements in the adjacency matrix of G are de-
termined by Ai,j = 1 if there’s an edge between user
i and j, and 0 otherwise. The Laplacian matrix [4]
of G is defined as L = D − A, where the degree
matrix D is a diagonal matrix with diagonal entries
di =

∑N
j=1Ai,j(i = 1, ..., N).

Graph kernels provide a way of capturing the intri-
cate structure among nodes in a graph (If instead we
are given features or attributes of the users, we could
replace graph kernels with polynomial kernels, RBF ker-
nels, etc. [17]). In our case, a graph kernel defines a sim-
ilarity measure for users’ taste on certain items. Gen-
erally speaking, users tend to have similar taste with
their friends and families, and thus their ratings for the
same items would also be correlated. Graph kernels
could capture such effects in the social network, and
the resulted kernel matrix would provide key informa-
tion about users’ rating patterns.

In this work, we examine three different graph
kernels and refer readers to [8] for more available
choices.

Diffusion kernel: The Diffusion kernel proposed in [8]
is derived from the idea of matrix exponential, and has a
nice interpretation on the diffusion process of substance
such as heat. In particular, if we let some substance be
injected at node i and flow along the edges of the graph,
KD(i, j) can be regarded as the amount of the substance
accumulated at node j in the steady state. The diffusion
kernel intuitively captures the global structure among
nodes in the graph, and it can be computed as follows:

(5.15) KD = lim
n→∞

(
1− βL

n

)n
= e−βL,

where β is the bandwidth parameter that determines

the extent of diffusion (β = 0 means no diffusion).

Commute Time (CT) kernel: As proposed in [6],
the Commute Time kernel is closely related to the so-
called average commute time (the number of steps a
random walker takes to commute between two nodes in
a graph), and can be computed using the pseudo-inverse
of the Laplacian matrix: KCT = L†.

Moreover, since KCT is conditionally positive defi-
nite,

√
KCT (i, j) behaves exactly like an Euclidean dis-

tance between nodes in the graph [10]. As a conse-
quence, the nodes can be isometrically embedded in the
subspace of Rn (n is the number of nodes), where the
Euclidean distance between the points is

√
KCT (i, j).

Regularized Laplacian (RL) kernel: Smola and
Kondor [19] introduce a way of performing regulariza-
tion on graphs that penalizes the variation between ad-
jacent nodes. In particular, it turns out that the graph
Laplacian could be equally defined as a linear operator
on the nodes of the graph, and naturally induces a semi-
norm on Rn. This semi-norm quantifies the variation of
adjacent nodes, and could be used for designing regu-
larization operators. Furthermore, such regularization
operators give rise to a set of graph kernels, and among
them is the Regularized Laplacian kernel:

(5.16) KRL = (I + γL)−1,

where γ > 0 is a constant.

5.3 Methodology Given the social network, we use
the Diffusion kernel, the CT kernel, and the RL kernel
described above to generate the covariance matrix KU

for users. The parameter setting is as follows: β =
0.01 for the Diffusion kernel and γ = 0.1 for the RL
kernel, which are chosen via validation. Since no side
information is available for the items in the Flixster or
Epinion dataset, KV is assumed diagonal: KV = σ2

V I,
where I is an M ×M identity matrix.

Given the covariance matrix KU generated from
the graph kernels, we perform gradient descent (KPMF
with stochastic gradient descent is discussed later) on U
and V using the update equations (4.7) and (4.8).4 At
each iteration, we evaluate the Root Mean Square Error
(RMSE) on the validation set, and terminate training
once the RMSE starts increasing, or the maximum
number of iterations allowed is reached. The learned
U and V are then used to predict the ratings in the test
set. We run the algorithm with different latent vector
dimensions, viz, D = 5 and D = 10.

4While gradient descent in KPMF involves the inverse of KU ,

we actually don’t need to invert the matrix when using the CT
kernel or the RL kernel since K−1

CT = L and K−1
RL = I + γL.
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Figure 5: RMSE for different algorithms on Flixster and Epinion datasets (best viewed in color). Lower is better.

We compare the performance of KPMF (using gra-
dient descent) with three algorithms: The first one uses
only the information from the social network. More
specifically, to predict the rating Rn,m, we take the
neighbors of user n from the social network, and average
their ratings on item m as the prediction for Rn,m. We
denote this method as social network based algorithm
(SNB). If none of the neighbors of user n has rated item
m, SNB cannot predict Rn,m. The second algorithm we
compare with is PMF [14], which only uses the infor-
mation from the rating matrix.5 The third algorithm is
SoRec [11], a state-of-the-art collaborative filtering al-
gorithm that combines information from both the rat-
ing matrix and the social network by performing matrix
factorization jointly. In addition, we also compare the
computational efficiency between KPMF using gradient
descent and KPMF using stochastic gradient descent.

Another experiment is prediction for users with no
past ratings. We test on 200 users who have most
connections in the social network (so that the effect

5BPMF actually performs worse than PMF in our experiments,
which might be due to improper parameter setting in the code

published by the authors. Thus we omit reporting BPMF results
here.

of the social network is most evident). All the past
ratings made by these 200 users in the training set are
not used for learning. Therefore, the observed rating
matrix would contain 200 rows of zeros, and the rest
1,800 rows remain unchanged.

The main measure we use for performance evalua-
tion is Root Mean Square Error (RMSE):

(5.17) RMSE =

√∑n
i=1(ri − r̂i)2

n
,

where ri denotes the ground-truth rating value, r̂i
denotes its predicted value, and n is the total number
of ratings to be predicted.

For SNB, since we cannot do missing value predic-
tion for some entries if none of the corresponding user’s
neighbors has rated the target item, we also define a
measure of coverage for reference, which is defined as
the percentage of ratings that can be predicted among
all the test entries.

5.4 Results The RMSE on Flixster and Epinion for
PMF, SoRec, and KPMF (with different kernels) are
given in Figure 5. In each plot, we show the results with
different number of ratings used for training, ranging
from 20% to 80% of the whole dataset. The main
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Figure 6: Performance improvement of KPMF compared to PMF on training sets with different number of
observed ratings (best viewed in color). The improvement of KPMF versus PMF decreases as more training
data are used. This is because for sparser datasets, PMF would have relatively more difficulty in learning users’
preferences from fewer number of past ratings, while KPMF could still take advantage of the known social relations
among users and utilize the observed ratings better.

(a) Flixster

Training data used 20% 40% 60% 80%
RMSE 0.289 0.280 0.272 0.267
Coverage 0.31 0.50 0.62 0.70

(b) Epinion

Training data used 20% 40% 60% 80%
RMSE 0.276 0.264 0.259 0.253
Coverage 0.45 0.64 0.73 0.80

Table 2: RMSE and Coverage from SNB on Flixster and Epinion.

observations are as follows:

1. KPMF, as well as SoRec, outperforms PMF on
both Flixster and Epinion, regardless of the number
of ratings used for training. While KPMF and
SoRec use both the social network and the rating
matrix for training, PMF uses the rating matrix
alone. The performance improvement of KPMF
and SoRec over PMF suggests that social network
is indeed playing a role in helping predict the
ratings. In addition, KPMF also outperforms
SoRec for most cases.

2. Figure 6 shows KPMF’s percentage of improvement
compared to PMF in terms of RMSE. For KPMF,
we can see that the performance gain increases as
the training data gets sparser. It implies that when
the information from the rating matrix is getting
weaker, the users’ social network is getting more
useful for prediction.

3. As shown in Figure 5, among the three graph ker-
nels examined, the CT kernel leads to the lowest
RMSE on both Flixster and Epinion. The advan-
tage is more obvious on Flixster than on Epinion.

4. We also give the RMSE of SNB in Table 2 for
reference. RMSE for this simple baseline algorithm
is much higher than the other algorithms. The
coverage is low with a sparse training matrix, but
gets higher when the sparsity decreases.

Table 3 shows the results for the experiment of pre-
diction for users with no past ratings. The RMSE are
over the selected 200 users who have most connections
in the social network, and their past ratings are not
utilized during training. To contrast, we only show re-
sults on the datasets with 20% and 80% training data.
KPMF consistently outperforms Item Average6 by a
large margin if 20% training data are used, but the ad-
vantage is not so obvious for the dataset of 80% train-
ing data (Note that Item Average actually outperforms
KPMF on Epinion for Diffusion and RL kernels). This
result again implies that the side information from users’
social network is more valuable when the observed rat-
ing matrix is sparse, and the sparsity is indeed often
encountered in real data [16].

Finally, we compare the computational effi-
ciency between KPMF with stochastic gradient de-
scent (KPMFSGD) and KPMF with gradient descent
(KPMFGD). Table 4 shows the RMSE results and run-
ning time for the two, where we set D = 10 and use
p% = 20% of ratings for training. Although KPMFSGD
has slightly higher RMSE than KPMFGD, it is hundreds
of times faster. Similar results are also observed in ex-
periments with other choices of D and p%. Therefore,
for large scale datasets in real applications, KPMFSGD
would be a better choice.

6The algorithm that predicts the missing rating for an item as
the average of its observed ratings by other users.



(a) 20% training data used

Flixster Epinion
D = 5 D = 10 D = 5 D = 10

Item Average 0.2358 0.2358 0.3197 0.3197
KPMF(Diffusion) 0.2183 0.2180 0.2424 0.2436
KPMF(CT) 0.2184 0.2180 0.2375 0.2378
KPMF(RL) 0.2182 0.2179 0.2422 0.2433

(b) 80% training data used

Flixster Epinion
D = 5 D = 10 D = 5 D = 10

Item Average 0.2256 0.2256 0.2206 0.2206
KPMF(Diffusion) 0.2207 0.2209 0.2257 0.2269
KPMF(CT) 0.2209 0.2208 0.2180 0.2180
KPMF(RL) 0.2206 0.2207 0.2252 0.2263

Table 3: RMSE on users with no ratings for training.

Flixster Epinion
KPMFGD KPMFSGD KPMFGD KPMFSGD

RMSE 0.180 0.184 0.232 0.240
Time (sec) 1353.6 5.5 1342.3 7.8

Table 4: Comparison of RMSE and running time for
KPMFGD and KPMFSGD. KPMFSGD is slightly worse than
KPMFGD in terms of RMSE, but significantly faster.

6 Experiments on Image Restoration

In this section, we demonstrate the use of KPMF
in image restoration to further illustrate the broad
potential of this proposed framework and the relevance
of incorporating side information. Image restoration is
the process of recovering corrupted regions of a target
image [3]. Let us denote the N ×M target image by
P , and the corrupted region to be recovered by Ω (see
black scribbles on the second column of Figure 8). The
task is to fill in the pixels inside Ω in a way that is
coherent with the known pixels outside Ω, i.e. P − Ω.
Now one might notice that this problem is quite similar
to the one faced in recommender systems, where the
rating matrixR becomes P , ratings become pixel values,
and the missing entries become Ω. Therefore, if we
consider the rows of the image as users and the columns
as items, we could apply the KPMF algorithm to fill
in the pixels in Ω just as predicting missing entries
in recommender systems. However, since no direct
information of correlations among rows or columns of
the image is given, the difficulty arises in obtaining
proper kernel matrices.

One way to address this is to construct such a
graph for images in analogy to the users’ social network
for recommender systems. To do that, we consider
the spatial smoothness in an image (while this will
be used here to illustrate the proposed framework, we
can consider graphs derived from other attributes as
well, e.g., smoothness in feature space, with features
derived from local patches or texture-type multiscale
analysis [5]). Below we describe how to construct
the graph for rows using this property (the graph for
columns can be constructed in a similar fashion). First,
we assume that each row is similar to its neighboring
rows and thus directly connected in the graph. Let ri
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Figure 7: The graph constructed for the rows of the
image using the spatial smoothness property. (Top:
∆ = 1, Bottom: ∆ = 2.)

(i = 1, ..., N) be the node in the graph that represents
the ith row of the image (nodes representing parts of
the image rows could be considered as well to further
localize the structure). Then there exists an edge
between ri and rj (j 6= i) if and only if |i − j| ≤ ∆,
where ∆ is a constant that determines the degree of
ri (see Figure 7). The corresponding adjacency matrix
of the graph is a band matrix with 1’s confined to the
diagonal band and 0’s elsewhere.

Given the graphs for rows and columns, we can ob-
tain their corresponding kernel matrices by applying the
graph kernels from Section 5.2. Since each color image is
composed of three channels (Red, Green and Blue), the
KPMF update equations for learning the latent matrices
are applied to each channel independently. Finally, the
estimation for Ω from the three channels, along with the
known pixels in P − Ω, are combined together to form
the restored image. Restoration results using PMF and
KPMF on several corrupted images are shown in Fig-
ure 8, and the RMSE comparison is given in Table 5
(note that all pixel values are normalized to [0, 1].).
Unlike KPMF that is able to utilize the spatial smooth-
ness assumption, PMF can only use the observed pix-
els in the image for restoration. Thus, as expected, its
restoration quality is worse than KPMF.

7 Conclusion

We have presented a new matrix completion algorithm–
KPMF, which exploits the underlying covariances
among rows and among columns of the data matrix si-
multaneously for missing value prediction. KPMF intro-
duces Gaussian process priors for latent matrices in the



KPMF PMF
Image Channel R Channel G Channel B Channel R Channel G Channel B #Masked pixels
1 0.082 0.073 0.066 0.120 0.101 0.094 5426
2 0.160 0.164 0.156 0.173 0.177 0.170 5975
3 0.135 0.133 0.131 0.179 0.171 0.164 31902
4 0.100 0.106 0.124 0.149 0.141 0.173 32407
5 0.103 0.049 0.030 0.143 0.081 0.040 28025
6 0.109 0.091 0.081 0.141 0.109 0.105 23061

Table 5: RMSE comparison between PMF and KPMF on RGB channels of restored images. Smaller is better.

generative model, which forces the learned latent ma-
trices to respect the covariance structure among rows
and among columns, enabling the incorporation of side
information when learning the model. As demonstrated
in the experiments, this characteristic could play a crit-
ical role in boosting the model performance, especially
when the observed data matrix is sparse.

Another advantage of KPMF over PMF and BPMF
is its ability to predict even when an entire row/column
of the data matrix is missing as long as appropriate
side information is available. In principle, KPMF is
applicable to general matrix completion problems, but
in this paper we focus on two specific applications:
recommender systems and image restoration. In the
future, we would like to generalize the current model
to handle the case of weighted entries, where different
entries are assigned different weights according to some
pre-defined criteria.
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Figure 8: Image restoration results using PMF and KPMF (best viewed in color). From left to right: original
images, corrupted images (regions to be restored are in black), images restored using PMF, and images restored
using KPMF. For KPMF, ∆ equals to 5 when constructing the row and column graphs, and Diffusion kernel with
β = 0.5 is used to obtain the kernel matrices.


