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Abstract

Discriminative deep learning approaches have shown
impressive results for problems where human-labeled
ground truth is plentiful, but what about tasks where labels
are difficult or impossible to obtain? This paper tackles one
such problem: establishing dense visual correspondence
across different object instances. For this task, although we
do not know what the ground-truth is, we know it should be
consistent across instances of that category. We exploit this
consistency as a supervisory signal to train a convolutional
neural network to predict cross-instance correspondences
between pairs of images depicting objects of the same cat-
egory. For each pair of training images we find an appro-
priate 3D CAD model and render two synthetic views to
link in with the pair, establishing a correspondence flow
4-cycle. We use ground-truth synthetic-to-synthetic corre-
spondences, provided by the rendering engine, to train a
ConvNet to predict synthetic-to-real, real-to-real and real-
to-synthetic correspondences that are cycle-consistent with
the ground-truth. At test time, no CAD models are re-
quired. We demonstrate that our end-to-end trained Con-
vNet supervised by cycle-consistency outperforms state-
of-the-art pairwise matching methods in correspondence-
related tasks.

1. Introduction

Consistency is all I ask!

TOM STOPPARD

In the past couple of years, deep learning has swept
though computer vision like wildfire. One needs only to
buy a GPU, arm oneself with enough training data, and turn
the crank to see head-spinning improvements on most com-
puter vision benchmarks. So it is all the more curious to
consider tasks for which deep learning has not made much
inroad, typically due to the lack of easily obtainable train-
ing data. One such task is dense visual correspondence –
the problem of estimating a pixel-wise correspondence field
between images depicting visually similar objects or scenes.
Not only is this a key ingredient for optical flow and stereo
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Figure 1. Estimating a dense correspondence flow field Fr1,r2 be-
tween two images r1 and r2 — essentially, where do pixels of r1
need to go to bring them into correspondence with r2 — is very
difficult. There is a large viewpoint change, and the physical dif-
ferences between the cars are substantial. We propose to learn
to do this task by training a ConvNet using the concept of cycle
consistency in lieu of ground truth. At training time, we find an
appropriate 3D CAD model to establish a correspondence 4-cycle,
and train the ConvNet to minimize the discrepancy between F̃s1,s2

and Fs1,r1◦Fr1,r2◦Fr2,s2 , where F̃s1,s2 is known by construction.
At test time, no CAD models are used.

matching, but many other computer vision tasks, including
recognition, segmentation, depth estimation, etc. could be
posed as finding correspondences in a large visual database
followed by label transfer.

In cases where the images depict the same physical
object/scene across varying viewpoints, such as in stereo
matching, there is exciting new work that aims to use the
commonality of the scene structure as supervision to learn
deep features for correspondence [2, 12, 20, 15, 39]. But
for computing correspondence across different object/scene
instances, no learning method to date has managed to seri-
ously challenge SIFT flow [26], the dominant approach for
this task.

How can we get supervision for dense correspondence
between images depicting different object instances, such
as images r1 and r2 in Figure 1? Our strategy in this paper
is to learn the things we don’t know by linking them up to
the things we do know. In particular, at training time, we
use a large dataset of 3D CAD models [1] to find one that

1



could link the two images, as shown in Figure 1. Here the
dense correspondence between the two views of the same
3D model s1 and s2 can serve as our ground truth super-
vision (as we know precisely where each shape point goes
when rendered in a different viewpoint), but the challenge
is to use this information to train a network that can produce
correspondence between two real images at test time.

A naive strategy is to train a network to estimate cor-
respondence between the rendered views of the same 3D
model, and then hope that the network could generalize to
real images as well. Unfortunately, this does not work in
practice (see Table 1), likely due to 1) the large visual dif-
ference between synthetic and real images and 2) the lack
of cross-instance ground truth correspondence for training.
Instead, in this paper we utilize the concept of cycle consis-
tency of correspondence flows [18, 40, 41] – the notion that
the composition of flow fields for any circular path through
the image set should have a zero combined flow. Here, cy-
cle consistency serves as a way to link the correspondence
between real images and the rendered views into a single 4-
cycle chain. We can then train our correspondence network
using cycle consistency as the supervisory signal. The idea
is to take advantage of the known synthetic-to-synthetic
correspondence as ground-truth anchors that allow cycle
consistency to propagate the correct correspondence infor-
mation from synthetic to real images, without diverging
or falling into a trivial solution. Here we could interpret
the cycle consistency as a kind of “meta-supervision” that
operates not on the data directly, but rather on how the
data should behave. As we show later, such 3D-guided
consistency supervision allows the network to learn cross-
instance correspondence that potentially overcomes some
of the major difficulties (e.g. significant viewpoint and ap-
pearance variations) of previous pairwise matching methods
like SIFT flow [26]. Our approach could also be thought of
as an extension and a reformulation of FlowWeb [40] as a
learning problem, where the image collection is stored im-
plicitly in the network representation.

The main contributions of this paper are: 1) We pro-
pose a general learning framework for tasks without direct
labels through cycle consistency as an example of “meta-
supervision”; 2) We present the first end-to-end trained deep
network for dense cross-instance correspondence; 3) We
demonstrate that the widely available 3D CAD models can
be used for learning correspondence between 2D images of
different object instances.

2. Related work
Cross-instance pairwise correspondence The classic
SIFT Flow approach [26] proposes an energy minimization
framework that computes dense correspondence between
different scenes by matching SIFT features [28] regularized
by smoothness and small displacement priors. Deformable

Spatial Pyramid (DSP) Matching [22], a recent follow-up
to SIFT Flow, greatly speeds up the inference while
modestly improving the matching accuracy. Barnes et
al. [5] extend the original PatchMatch [4] algorithm to
allow more general-purpose (including cross-instance)
matching. Bristow et al. [6] build an exemplar-LDA
classifier around each pixel, and aggregate the matching
responses over all classifiers with additional smoothness
priors to obtain dense correspondence estimation. In these
same proceedings, Ham et al. [14] take advantage of recent
developments in object proposals, and utilize local and
geometric consistency constraints among object proposals
to establish dense semantic correspondence.

Collection correspondence Traditionally, correspon-
dence has been defined in a pairwise manner, but recent
works have tried to pose correspondence as the problem
of joint image-set alignment. The classic like on work
on Congealing [25, 16] uses sequential optimization to
gradually lower the entropy of the intensity distribution of
the entire image set by continuously warping each image
via a parametric transformation (e.g. affine). RASL [31],
Collection Flow [21] and Mobahi et al. [29] first estimate
a low-rank subspace of the image collection, and then
perform joint alignment among images projected onto the
subspace. FlowWeb [40] builds a fully-connected graph
for the image collection with images as nodes and pairwise
flow fields as edges, and establishes globally-consistent
dense correspondences by maximizing the cycle consis-
tency among all edges. While achieving state-of-the-art
performance, FlowWeb is overly dependent on the initial-
ization quality, and scales poorly with the size of the image
collection. Similar to a recent work on joint 3D shape
alignment [18], Zhou et al. [41] tackle the problem by
jointly optimizing feature matching and cycle consistency,
but formulate it as a low-rank matrix recovery which they
solve with a fast alternating minimization method. Virtual
View Networks [7] leverage annotated keypoints to infer
dense correspondence between images connected in a
viewpoint graph, and use this graph to align a query image
to all the reference images in order to perform single-view
3D reconstruction. Cho et al. [9] use correspondence
consistency among selective search windows in a diverse
image collection to perform unsupervised object discovery.

Deep learning for correspondence Recently, several
works have applied convolutional neural networks to learn
same-instance dense correspondence. FlowNet [11] learns
an optical flow CNN with a synthetic Flying Chairs dataset
that generalizes well to existing benchmark datasets, yet
still falls a bit short of state-of-the-art optical flow methods
like DeepFlow [36] and EpicFlow [32]. Several recent
works have also used supervision from reconstructed 3D



scene and stereo pairs [15, 39, 2]. However all these
approaches are inherently limited to matching images of
the same physical object/scene. Long et al. [27] use deep
features learned from large-scale object classification tasks
to perform intra-class image alignment, but found it to
perform similarly to SIFT flow.

Image-shape correspondence Our work is partially
motivated by recent progress in image-shape alignment
that allows establishing correspondence between images
through intermediate 3D shapes. Aubry et al. [3] learns
discriminative patches for matching 2D images to their cor-
responding 3D CAD models, while Peng et al. [30] utilizes
CAD models to train object detectors with few shots of
labeled real images. In cases where depth data is available,
deep learning methods have recently been applied to 3D
object recognition and alignment between CAD models and
RGB-D images [13, 33, 37]. Other works [17, 34] leverage
image and shape collections for joint pose estimation and
refining image-shape alignment, which are further applied
to single-view object reconstruction and depth estimation.
Although our approach requires 3D CAD models for
constructing the training set, the image-shape alignment
is jointly learned with the image-image alignment, and no
CAD models are required at test time.

3. Approach
Our goal is to predict a dense flow (or correspondence)

field Fa,b : R2 → R2 between pairs of images a and b. The
flow field Fa,b(p) = (px−qx, py−qy) computes the relative
offset from each point p in image a to a corresponding point
q in image b. Given that pairwise correspondence might not
always be well-defined (e.g. a side-view car and a frontal-
view car do not have many visible parts in common), we ad-
ditionally compute a matchability map Ma,b : R2 → [0, 1]
predicting if a correspondence exists Ma,b(p) = 1 or not
Ma,b(p) = 0.

We learn both the flow field and the matchability predic-
tion with a convolutional neural network. Both functions
are differentiable with respect to the network parameters,
which could be directly learned if we had dense annotations
for Fa,b and Ma,b on a large set of real image pairs. How-
ever, in practice it is infeasible to obtain those annotations
at scale as they are either too time-consuming or ambiguous
to annotate.

We instead choose a different route, and learn both func-
tions by placing the supervision on the desired properties
of the ground-truth, i.e. while we do not know what the
ground-truth is, we know how it should behave. In this pa-
per, we use cycle consistency with 3D CAD models as the
desired property that will be our supervisory signal. Specif-
ically, for each pair of real training images r1 and r2, we
find a 3D CAD model of the same category, and render

two synthetic views s1 and s2 in similar viewpoint as r1
and r2, respectively (see Section 4.1 for more details). For
each training quartet < s1, s2, r1, r2 > we learn to predict
flows from s1 to r1 (Fs1,r1 ) to r2 (Fr1,r2 ) to s2 (Fr2,s2 )
that are cycle-consistent with the ground-truth flow from s1
to s2 (F̃s1,s2 ) provided by the rendering engine (similarly
for the matchability prediction). By constructing consis-
tency supervision through 3D CAD models, we aim to learn
2D image correspondences that potentially captures the 3D
semantic appearance of the query objects. Furthermore,
making F̃s1,s2 be ground-truth by construction prevents the
cycle-consistency optimization from producing trivial solu-
tions, such as identity flows.

Sections 3.1 and 3.2 formally define our training objec-
tive for learning correspondence F and matchability M , re-
spectively. Section 3.3 demonstrates how to obtain continu-
ous approximation of discrete maps that allows end-to-end
training. Section 3.4 describes our network architecture.

3.1. Learning dense correspondence

Given a set of training quartets {< s1, s2, r1, r2 >}, we
train the CNN to minimize the following objective:∑

<s1,s2,r1,r2>

Lflow

(
F̃s1,s2 , Fs1,r1 ◦Fr1,r2 ◦Fr2,s2

)
, (1)

where F̃s1,s2 refers to the ground-truth flow between two
synthetic views, Fs1,r1 , Fr1,r2 and Fr2,s2 are predictions
made by the CNN along the transitive path. The transitive
flow composition F̄a,c = Fa,b ◦ Fb,c is defined as

F̄a,c(p) = Fa,b(p) + Fb,c(p+ Fa,b(p)) , (2)

which is differentiable as long as Fa,b and Fb,c are differ-
entiable. Lflow(F̃s1,s2 , F̄s1,s2) denotes the truncated Eu-
clidean loss defined as

Lflow(F̃s1,s2 , F̄s1,s2) =∑
p|M̃s1,s2 (p)=1

min(‖F̃s1,s2(p)− F̄s1,s2(p)‖2, T 2) ,

where M̃s1,s2(p) is the ground-truth matchability map pro-
vided by the rendering engine (M̃s1,s2(p) = 0 when p is
either a background pixel or not visible in s2), and T = 15
(pixels) for all our experiments. In practice, we found the
truncated loss to be more robust to spurious outliers for
training, especially during the early stage when the network
output tends to be highly noisy.

3.2. Learning dense matchability

Our training objective for matchability prediction also
utilizes the cycle consistency signal:∑

<s1,s2,r1,r2>

Lmat

(
M̃s1,s2 , Ms1,r1 ◦Mr1,r2 ◦Mr2,s2

)
, (3)
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Figure 2. Overview of our network architecture, which consists of three major components: 1) feature encoder on both input images, 2)
flow decoder predicting the dense flow field from the source to the target image and 3) matchability decoder that outputs a probability
map indicating whether each pixel in the source image has a correspondence in the target. See Section 3.4 for more details.

where M̃s1,s2 refers to the ground-truth matchability map
between the two synthetic views, Ms1,r1 , Mr1,r2 and
Mr2,s2 are CNN predictions along the transitive path, and
Lmat denotes per-pixel cross-entropy loss. The matchabil-
ity map composition is defined as

M̄a,c(p) = Ma,b(p)Mb,c(p+ Fa,b(p)) , (4)

where the composition depends on both the matchability as
well as the flow field.

Due to the multiplicative nature in matchability composi-
tion (as opposed to additive in flow composition), we found
that training with objective 3 directly results in the network
exploiting the clean background in synthetic images, which
helps predict a perfect segmentation of the synthetic object
inMs1,r1 . OnceMs1,r1 predicts zero values for background
points, the network has no incentive to correctly predict the
matchability for background points in Mr1,r2 , as the multi-
plicative composition has zero values regardless of the tran-
sitive predictions along Mr1,r2 and Mr2,s2 . To address this,
we fixMs1,r1 = 1 andMr2,s2 = 1, and only train the CNN
to infer Mr1,r2 . This assumes that every pixel in s1(s2) is
matchable in r1(r2), and allows the matchability learning
to happen between real images. Note that this is still differ-
ent from directly using M̃s1,s2 as supervision for Mr1,r2 as
the matchability composition depends on the predicted flow
field along the transitive path.

The matchability objective 3 is jointly optimized with the
flow objective 1 during training, and our final objective can
be written as

∑
<s1,s2,r1,r2>

Lflow + λLmat with λ = 100.

3.3. Continuous approximation of discrete maps

An implicit assumption made in our derivation of the
transitive composition (Eq. 2 and 4) is that F andM are dif-
ferentiable functions over continuous input, while images
inherently consist of discrete pixel grids. To allow end-to-
end training with stochastic gradient descent (SGD), we ob-

tain continuous approximation of the full flow field and the
matchability map with bilinear interpolation over the CNN
predictions on discrete pixel locations. Specifically, for
each discrete pixel location p̂ ∈ {1, . . . ,W} × {1, . . . ,H},
the network predicts a flow vector Fa,b(p̂) as well as a
matchability score Ma,b(p̂), and the approximation over all
continuous points p ∈ [1,W ]× [1, H] is obtained by:

Fa,b(p) =
∑
p̂∈Np

(1− |px − p̂x|)(1− |py − p̂y|)Fa,b(p̂)

Ma,b(p) =
∑
p̂∈Np

(1− |px − p̂x|)(1− |py − p̂y|)Ma,b(p̂) ,

where Np denotes the four-neighbor pixels (top-left, top-
right, bottom-left, bottom-right) of point p, or just p if it
is one of the discrete pixels. This is equivalent to the dif-
ferentiable image sampling with a bilinear kernel proposed
in [19].

3.4. Network architecture

Our network architecture (see Figure 2) follows the
encoder-decoder design principle with three major com-
ponents: 1) feature encoder of 8 convolution layers that
extracts relevant features from both input images with
shared network weights; 2) flow decoder of 9 fractionally-
strided/up-sampling convolution (uconv) layers that assem-
bles features from both input images, and outputs a dense
flow field; 3) matchability decoder of 9 uconv layers that
assembles features from both input images, and outputs a
probability map indicating whether each pixel in the source
image has a correspondence in the target.

All conv/uconv layers are followed by rectified linear
units (ReLUs) except for the last uconv layer of either de-
coder, and the filter size is fixed to 3 × 3 throughout the
whole network. No pooling layer is used, and the stride is
2 when increasing/decreasing the spatial dimension of the



feature maps. The output of the matchability decoder is fur-
ther passed to a sigmoid layer for normalization.

During training, we apply the same network to three dif-
ferent input pairs along the cycle (s1 → r1, r1,→ r2, and
r2 → s2), and composite the output to optimize the consis-
tency objectives 1 and 3.

4. Experimental Evaluation
In this section, we describe the details of our network

training procedure, and evaluate the performance of our net-
work on correspondence and matchability tasks.

4.1. Training set construction

The 3D CAD models we used for constructing training
quartets come from the ShapeNet database [1], while the
real images are from the PASCAL3D+ dataset [38]. For
each object instance (cropped from the bounding box and
rescaled to 128 × 128) in the train split of PASCAL3D+,
we render all 3D models under the same camera viewpoint
(provided by PASCAL3D+), and only use K = 20 near-
est models as matches to the object instance based on the
HOG [10] Euclidean distance. We then construct train-
ing quartets each consisting of two real images (r1 and r2)
matched to the same 3D model and their corresponding ren-
dered views (s1 and s2). On average, the number of valid
training quartets for each category is about 80, 000.

4.2. Network training

We train the network in a category-agnostic manner (i.e.
a single network for all categories). We first initialize
the network (feature encoder + flow decoder pathway) to
mimic SIFT flow by randomly sampling image pairs from
the training quartets and training the network to minimize
the Euclidean loss between the network prediction and the
SIFT flow output on the sampled pair1. Then we fine-tune
the whole network end-to-end to minimize the consistency
loss defined in Eq. 1 and 3. We use the ADAM solver [23]
with β1 = 0.9, β2 = 0.999, initial learning rate of 0.001,
step size of 50, 000, step multiplier of 0.5 for 200, 000 iter-
ations. We train with mini-batches of 40 image pairs during
initialization and 10 quartets during fine-tuning.

We visualize the effect of our cycle-consistency train-
ing in Figure 3, where we sample some random points in
the synthetic image s1, and plot their predicted correspon-
dences along the cycle s1 → r1 → r2 → s2 to compare
with the ground-truth in s2. One can see that the tran-
sitive trajectories become more and more cycle-consistent
with more iterations of training, while individual correspon-
dences along each edge of the cycle also tend to become
more semantically plausible.

1We also experimented with other initialization strategies (e.g. predict-
ing ground-truth flows between synthetic images), and found that initializ-
ing with SIFT flow output works the best.

4.3. Feature visualization

We visualize the features learned by the network using
the t-SNE algorithm [35]. Specifically, we extract conv-9
features (i.e. the output of the last encoder layer) from the
entire set of car instances in the PASCAL3D+ dataset, and
embed them in 2-D with the t-SNE algorithm. Figure 4 vi-
sualizes the embedding. Interestingly, while our network is
not explicitly trained to perform viewpoint estimation, the
embedding layout appears to be viewpoint-sensitive, which
implies that the network might implicitly learn that view-
point is an important cue for correspondence/matchability
tasks through our consistency training.

4.4. Keypoint transfer

We evaluate the quality of our correspondence output
using the keypoint transfer task on the 12 categories from
PASCAL3D+ [38]. For each category, we exhaustively
sample all image pairs from the val split (not seen during
training), and determine if a keypoint in the source image is
transferred correctly by measuring the Euclidean distance
between our correspondence prediction and the annotated
ground-truth (if exists) in the target image. A correct trans-
fer means the prediction falls within α ·max(H,W ) pixels
of the ground-truth with H and W being the image height
and width, respectively (both are 128 pixels in our case). We
compute the percentage of correct keypoint transfer (PCK)
over all image pairs as the metric, and provide performance
comparison for the following methods in Table 1:

• SIFT flow [26] – A classic method for dense corre-
spondence using SIFT feature descriptors and hand-
designed smoothness and large-displacement priors.
We also ran preliminary evaluation on a more recent
follow-up based on deformable spatial pyramids [22],
and found it to perform similarly to SIFT flow.

• Long et al. [27] – Similar MRF energy minimization
framework as SIFT flow but with deep features learned
from the ImageNet classification task.

• CNNI2S – Our network trained on real image pairs
with correspondence inferred by compositing the out-
put of an off-the-shelf image-to-shape alignment algo-
rithm [17] and the ground-truth synthetic correspon-
dence (i.e. obtaining direct supervision for Fr1,r2

through Fr1,s1◦F̃s1,s2◦Fs2,r2 ,where Fr1,s1 and Fs2,r2

are inferred from [17]).

• CNNinit – Our network trained to mimic SIFT flow.

• CNNinit+ Synthetic ft. – fine-tuning on synthetic im-
age pairs with ground-truth correspondence after ini-
tialization with SIFT flow.



Training iterations 

Figure 3. Visualizing the effects of consistency training on the network output. The randomly sampled ground-truth correspondences
between synthetic images are marked in solid lines, and the correspondence predictions along the cycle (synthetic to real, real to real and
real to synthetic) made by our network are marked in dashed lines. One can see that the transitive composition of our network output
becomes more and more consistent with the ground-truth as training progresses, while individual correspondences along each edge of the
cycle also tend to become more semantically plausible.

Figure 4. Conv-9 feature embedding for cars visualized by t-SNE [35]. Interestingly, the overall layout seems to be mainly clustered based
on the camera viewpoint, while the network is not explicitly trained to perform viewpoint estimation. This suggests that the network might
implicitly learn that viewpoint is an important cue for the correspondence/matchability tasks through our consistency training.

• CNNinit+ Consistency ft. – fine-tuning with our ob-
jectives 1 and 3 after initialization with SIFT flow.

Overall, our consistency-supervised network signifi-
cantly outperforms all other methods (except on “bicycle”
and “motorbike” where SIFT flow has a slight advantage).

Notice the significant improvement over the initial network
after consistency fine-tuning. The performance gap be-
tween the last two rows of Table 1 suggests that consis-
tency supervision is much more effective in adapting to the
real image domain than direct supervision from synthetic
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Figure 5. Comparison of keypoint transfer performance for different methods on example test image pairs. Overall, our consistency-
supervised network (second-to-last row) is able to produce more accurate keypoint transfer results than the baselines. The last column
shows a case when SIFT flow performs better than ours.

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [26] 9.8 23.3 8.9 28.3 28.6 22.4 10.8 13.2 17.9 14.2 14.4 42.9 19.6
Long et al. [27] 10.4 22.8 7.6 30.8 28.4 21.1 10.2 12.7 13.5 12.9 12.6 38.5 18.5

CNNI2S 9.1 14.7 5.2 25.9 25.4 23.7 11.9 11.3 13.4 16.8 11.3 45.2 17.8
CNNinit 8.6 20.3 8.5 29.4 24.3 20.1 9.9 11.6 15.4 11.6 12.5 40.2 17.7

CNNinit+ Synthetic ft. 10.2 22.2 8.7 30.4 24.5 21.3 10.2 12.1 15.7 12.0 12.8 40.5 18.4
CNNinit+ Consistency ft. 11.3 22.3 10.1 40.3 40.3 33.3 15.0 13.2 17.2 17.4 16.7 51.1 24.0

Table 1. Keypoint transfer accuracy measured in PCK (α = 0.1) on the PASCAL3D+ categories. Overall, our final network (last row)
outperforms all baselines (except on “bicycle” and “motorbike”). Notice the performance gap between our initialization (CNNinit) and the
final network, which highlights the improvement made by cycle-consistency training.

ground-truth.
Figure 5 compares sample keypoint transfer results using

different methods. In general, our final prediction tends to
match the ground-truth much better than the other baselines,
and could sometimes overcome substantial viewpoint and
appearance variation where previous methods, like SIFT
flow, are notoriously error-prone.

4.5. Matchability prediction

We evaluate the performance of matchability prediction
using the PASCAL-Part dataset [8], which provides human-
annotated part segment labeling2. For each test image pair,
a pixel in the source image is deemed matchable if there ex-
ists another pixel in the target image that shares the same
part label, and all background pixels are unmatchable. We
measure the performance by computing the percentage of
pixels being classified correctly. For our method, we clas-
sify a pixel as matchable if its probability is> 0.5 according
to the network prediction. To obtain matchability prediction

2For categories without part labels, including boat, chair, table and sofa,
we use the foreground segmentation mask instead.

for SIFT flow, we compute the L1 norm of the SIFT feature
matching error for each source pixel after the alignment,
and a pixel is predicted to be matchable if the error is below
a certain threshold (we did grid search on the training set
to determine the threshold, and found 1, 000 to perform the
best). Table 2 compares the classification accuracy between
our method and SIFT flow prediction (chance performance
is 50%). Our method significantly outperforms SIFT flow
on all categories except “bicycle” and “motorbike” (67.8%
vs. 57.1% mean accuracy).

We visualize some examples of our matchability predic-
tion in Figure 6. Notice how the prediction varies when the
target image changes with the source image being the same.

4.6. Shape-to-image segmentation transfer

Although in this paper we are mostly interested in find-
ing correspondence between real images, a nice byproduct
of our consistency training is that the network also implic-
itly learns cross-domain, shape-to-image correspondence,
which allows us to transfer per-pixel labels (e.g. surface
normals, segmentation masks, etc.) from shapes to real im-
ages. As a proof of concept, we ran a toy experiment on the
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Figure 6. Sample visualization of our matchability prediction. Notice how the prediction varies for the same source image when changing
only the target image. The last two columns demonstrate a typical failure mode of our network having trouble localizing the fine boundaries
of the matchable regions.

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [26] 66.2 62.7 49.5 50.5 52.0 64.5 50.7 50.5 80.6 49.6 58.5 50.2 57.1
Ours 75.8 61.0 66.7 67.1 67.3 72.0 66.1 68.4 68.0 71.2 64.4 65.1 67.8

Table 2. Performance comparison of matchability prediction between SIFT flow and our method (higher is better). See Section 4.5 for
more details on the experiment setup.

Query Dense CRF SIFTflow Ours Ret. Shape 

Figure 7. Visual comparison among different segmentation meth-
ods. From left to right: input query image, segmentation by [24],
segmentation transferred using SIFT flow, segmentation trans-
ferred using our flow and the retrieved shape whose segmentation
is used for transferring. See Section 4.6 for more details.

task of segmentation transfer. Specifically, we construct a
shape database of about 200 shapes per category, with each
shape being rendered in 8 canonical viewpoints. Given a
query real image, we apply our network to predict the corre-
spondence between the query and each rendered view of the

same category, and warp the query image according to the
predicted flow field. Then we compare the HOG Euclidean
distance between the warped query and the rendered views,
and retrieve the rendered view with minimum error whose
correspondence to the query image on the foreground re-
gion is used for segmentation transfer. Figure 7 shows sam-
ple segmentation using different methods. We can see that
our learned flows tend to produce more accurate segmen-
tation transfer than SIFT flow using the same pipeline. In
some cases our output can even segment challenging parts
such as the bars and wheels of the chairs.

5. Discussion
In this paper, we used cycle-consistency as a supervi-

sory signal to learn dense cross-instance correspondences.
Not only did we find that this kind of supervision is sur-
prisingly effective, but also that the idea of learning with
cycle-consistency could potentially be fairly general. One
could apply the same idea to construct other training scenar-
ios, as long as the ground-truth of one or more edges along
the cycle is known. We hope that this work will inspire
more efforts to tackle tasks with little or no direct labels
by exploiting cycle consistency or other types of indirect or
“meta”-supervision.
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